对比损失长期以来一直是深度度量学习的关键成分,现在由于自我监督学习的成功而正在变得越来越受欢迎。最近的研究表明,在学习代表网络时以互补的方式分解这种损失的损失:正期和熵项。虽然因此整体损失被定义为两种术语的组合,但这两个术语的余额通常隐藏在实施细节之后,并且在实践中很大程度上被忽略和次优。在这项工作中,我们将对比损失的平衡作为超参数优化问题,并提出了一种基于坐标的下降的搜索方法,可有效地找到优化评估性能的超参数。在此过程中,我们将现有的余额分析扩展到对比度边缘损失,包括批次大小在余额中,并解释如何从批处理中汇总损耗元素,以在更大范围内保持近最佳性能。来自深度度量学习和自我监督学习的基准的广泛实验表明,使用我们的方法比其他常用搜索方法更快地找到最佳超参数。
translated by 谷歌翻译
使用嘈杂的标签学习是一种用于图像分类的活跃研究区域。然而,研究了噪声标签对图像检索的影响。在这项工作中,我们提出了一种抗噪声的图像检索,名为基于教师的相互作用,T-SINT,它识别噪声交互,即。距离矩阵中的元素,通过使用基于教师的训练设置,在检索损失中选择正确的正面和负相互作用,这些培训设置有助于稳定性。结果,它始终如一地优于具有合成噪声和更现实的噪声的基准数据集的高噪声速率的最先进的方法。
translated by 谷歌翻译
视觉地位识别(VPR)通常关注本地化室外图像。但是,本地化包含部分户外场景的室内场景对于各种应用来说可能具有很大的值。在本文中,我们介绍了内部视觉地点识别(IOVPR),一个任务,旨在通过Windows可见的户外场景本地化图像。对于此任务,我们介绍了新的大型数据集Amsterdam-XXXL,在阿姆斯特丹拍摄的图像,由640万全景街头视图图像和1000个用户生成的室内查询组成。此外,我们介绍了一个新的培训协议,内部数据增强,以适应视觉地点识别方法,以便展示内外视觉识别的潜力。我们经验展示了我们提出的数据增强方案的优势,较小的规模,同时展示了现有方法的大规模数据集的难度。通过这项新任务,我们旨在鼓励为IOVPR制定方法。数据集和代码可用于HTTPS://github.com/saibr/iovpr的研究目的
translated by 谷歌翻译
Remote sensing imagery provides comprehensive views of the Earth, where different sensors collect complementary data at different spatial scales. Large, pretrained models are commonly finetuned with imagery that is heavily augmented to mimic different conditions and scales, with the resulting models used for various tasks with imagery from a range of spatial scales. Such models overlook scale-specific information in the data. In this paper, we present Scale-MAE, a pretraining method that explicitly learns relationships between data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network by masking an input image at a known input scale, where the area of the Earth covered by the image determines the scale of the ViT positional encoding, not the image resolution. Scale-MAE encodes the masked image with a standard ViT backbone, and then decodes the masked image through a bandpass filter to reconstruct low/high frequency images at lower/higher scales. We find that tasking the network with reconstructing both low/high frequency images leads to robust multiscale representations for remote sensing imagery. Scale-MAE achieves an average of a $5.0\%$ non-parametric kNN classification improvement across eight remote sensing datasets compared to current state-of-the-art and obtains a $0.9$ mIoU to $3.8$ mIoU improvement on the SpaceNet building segmentation transfer task for a range of evaluation scales.
translated by 谷歌翻译
Anomaly detection on time series data is increasingly common across various industrial domains that monitor metrics in order to prevent potential accidents and economic losses. However, a scarcity of labeled data and ambiguous definitions of anomalies can complicate these efforts. Recent unsupervised machine learning methods have made remarkable progress in tackling this problem using either single-timestamp predictions or time series reconstructions. While traditionally considered separately, these methods are not mutually exclusive and can offer complementary perspectives on anomaly detection. This paper first highlights the successes and limitations of prediction-based and reconstruction-based methods with visualized time series signals and anomaly scores. We then propose AER (Auto-encoder with Regression), a joint model that combines a vanilla auto-encoder and an LSTM regressor to incorporate the successes and address the limitations of each method. Our model can produce bi-directional predictions while simultaneously reconstructing the original time series by optimizing a joint objective function. Furthermore, we propose several ways of combining the prediction and reconstruction errors through a series of ablation studies. Finally, we compare the performance of the AER architecture against two prediction-based methods and three reconstruction-based methods on 12 well-known univariate time series datasets from NASA, Yahoo, Numenta, and UCR. The results show that AER has the highest averaged F1 score across all datasets (a 23.5% improvement compared to ARIMA) while retaining a runtime similar to its vanilla auto-encoder and regressor components. Our model is available in Orion, an open-source benchmarking tool for time series anomaly detection.
translated by 谷歌翻译
We present an update on the current architecture of the Zoea knowledge-based, Composable Inductive Programming system. The Zoea compiler is built using a modern variant of the black-board architecture. Zoea integrates a large number of knowledge sources that encode different aspects of programming language and software development expertise. We describe the use of synthetic test cases as a ubiquitous form of knowledge and hypothesis representation that sup-ports a variety of reasoning strategies. Some future plans are also outlined.
translated by 谷歌翻译
Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems. A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation tasks. The existing work on QGANs is still limited to small-scale proof-of-concept examples based on images with significant down-scaling. Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework. We demonstrate its superior learning capabilities by generating $28 \times 28$ pixels grey-scale images without dimensionality reduction or classical pre/post-processing on multiple classes of the standard MNIST and Fashion MNIST datasets, which achieves comparable results to classical frameworks with 3 orders of magnitude less trainable generator parameters. To gain further insight into the working of our hybrid approach, we systematically explore the impact of its parameter space by varying the number of qubits, the size of image patches, the number of layers in the generator, the shape of the patches and the choice of prior distribution. Our results show that increasing the quantum generator size generally improves the learning capability of the network. The developed framework provides a foundation for future design of QGANs with optimal parameter set tailored for complex image generation tasks.
translated by 谷歌翻译
Datasets for training recommender systems are often subject to distribution shift induced by users' and recommenders' selection biases. In this paper, we study the impact of selection bias on datasets with different quantization. We then leverage two differently quantized datasets from different source distributions to mitigate distribution shift by applying the inverse probability scoring method from causal inference. Empirically, our approach gains significant performance improvement over single-dataset methods and alternative ways of combining two datasets.
translated by 谷歌翻译
There has been great recent advancement in human-computer chat. However, proper evaluation currently requires human judgements that produce notoriously high-variance metrics due to their inherent subjectivity. Furthermore, there is little standardization in the methods and labels used for evaluation, with an overall lack of work to compare and assess the validity of various evaluation approaches. As a consequence, existing evaluation results likely leave an incomplete picture of the strengths and weaknesses of open-domain chatbots. We aim towards a dimensional evaluation of human-computer chat that can reliably measure several distinct aspects of chat quality. To this end, we present our novel human evaluation method that quantifies the rate of several quality-related chatbot behaviors. Our results demonstrate our method to be more suitable for dimensional chat evaluation than alternative likert-style or comparative methods. We then use our validated method and existing methods to evaluate four open-domain chat models from the recent literature.
translated by 谷歌翻译
Increasingly taking place in online spaces, modern political conversations are typically perceived to be unproductively affirming -- siloed in so called ``echo chambers'' of exclusively like-minded discussants. Yet, to date we lack sufficient means to measure viewpoint diversity in conversations. To this end, in this paper, we operationalize two viewpoint metrics proposed for recommender systems and adapt them to the context of social media conversations. This is the first study to apply these two metrics (Representation and Fragmentation) to real world data and to consider the implications for online conversations specifically. We apply these measures to two topics -- daylight savings time (DST), which serves as a control, and the more politically polarized topic of immigration. We find that the diversity scores for both Fragmentation and Representation are lower for immigration than for DST. Further, we find that while pro-immigrant views receive consistent pushback on the platform, anti-immigrant views largely operate within echo chambers. We observe less severe yet similar patterns for DST. Taken together, Representation and Fragmentation paint a meaningful and important new picture of viewpoint diversity.
translated by 谷歌翻译